Exercise sheet 3: Differential geometry and metrics

Please prepare your solutions, ready to present in the class on 11.05.2022 at 16:00.

1. Consider the following vector fields on \mathbb{R}^3 :

$$U(x, y, z) = z\partial_x - 2z\partial_y + (2y - x)\partial_z,$$

$$V(x, y, z) = y\partial_x - x\partial_y.$$

Ausgabe: 04.05.2022

- (a) Compute the Lie bracket [U, V].
- (b) By considering the one-form $\omega = x \, dx + y \, dy + z \, dz$, show that U and V, when restricted to $S^2 \subset \mathbb{R}^3$, define vector fields on S^2 , i.e. lie in the tangent bundle TS^2 .
- 2. The hyperboloid H^2 consists of all $X=(t,x,y)\in\mathbb{R}^{1,2}$, t>0, with $X^\mu X_\mu=-1$, i.e. $-t^2+x^2+y^2=-1.$
 - (a) By considering the Euler-Lagrange equations for the lagrangian

$$\mathcal{L}[X(s)] = \dot{X}^{\mu} \dot{X}_{\mu} + \lambda (X^{\mu} X_{\mu} + 1), \quad \dot{X}^{\mu} := \partial_s X^{\mu},$$

show that the geodesics on H^2 , embedded in $\mathbb{R}^{1,2}$, are of the form

$$X^{\mu}(s) = A^{\mu} e^{\sqrt{\lambda}s} + B^{\mu} e^{-\sqrt{\lambda}s}, \quad \lambda > 0,$$

where A^μ and B^μ are null vectors in $\mathbb{R}^{1,2}$ satisfying $A^\mu B_\mu = -\frac{1}{2}.$

- (b) Show that H^2 may be parameterised as $(t,x,y)=(\cosh\theta,\sinh\theta\cos\phi,\sinh\theta\sin\phi)$. Let g be the metric on H^2 determined by restriction of the Minkowski metric on $\mathbb{R}^{1,2}$ to H^2 . Using the above parameterisation, determine the components $g_{\mu\nu}$ of the metric in the coordinates $(r,\phi)\in[0,\infty)\times[0,2\pi)$, where $r=\sqrt{x^2+y^2}$.
- (c) Consider new coordinates $(\rho,\varphi)\in[0,1)\times[0,2\pi)$ where $r=\frac{2\rho}{1-\rho^2}$ and $\phi=\varphi$.
 - i. Calculate the components of the metric g on H^2 in the new coordinates (ρ, φ) .
 - ii. For some choice of coordinates x^{α} on H^2 , define $D_{\alpha\beta\gamma}=\partial_{\alpha}g_{\beta\gamma}$. Calculate $D_{\alpha\beta\gamma}$ for the coordinates (r,ϕ) and (ρ,φ) . Use your answer to explain why $D_{\alpha\beta\gamma}$ does not define a tensor.
- (d) Using your answer to part (a), determine general formulae for the geodesics on H^2 in the new coordinates as curves $(r(s),\phi(s))$ and $(\rho(s),\varphi(s))$. Plot examples of these in the (r,ϕ) and (ρ,φ) regions.
- 3. Consider the metric described by the line-element

$$ds^{2} = (y^{2} - 4x^{2} + 2)(dx^{2} + dy^{2}) + 4xy(dx^{2} - dy^{2}) + (8x^{2} - 2y^{2})dxdy$$

Is the metric well-defined for all $(x,y) \in \mathbb{R}^2$? Determine, in terms of $(x,y) \in \mathbb{R}^2$ where it is well-defined, the signature of the metric.